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Abstract
The notion of spin squeezing involves a reduction in the uncertainty of a
component of the spin vector �S below a certain limit. This aspect has been
studied earlier (Mallesh et al 2000a J. Phys. A: Math. Gen. 33 779, Mallesh
et al 2000b J. Phys. A: Math. Gen. 34 3293) for pure and mixed states of
definite spin. In this paper, this study has been extended to coupled spin states
which do not possess a sharp spin value. A general squeezing criterion has
been obtained such that a direct product state for two spinors is not squeezed.
The squeezing aspect of entangled states is studied in relation to their spin–spin
correlations.

PACS number: 42.50.Dv

1. Introduction

The notion of squeezing which involves reduction in the variance (uncertainty) of an observable
below a standard quantum limit has been studied [3, 4] in the literature for an oscillator and a
bosonic field. The squeezed states of the electromagnetic field have received due attention in
the last decade and studies done [3, 4] so far on these have focused on various aspects such
as the nonclassical features associated with them, on possible ways and means of generating
them and on the practical applications of these states to achieve minimum noise in amplifiers
and in optical interferometers. On the theoretical side, the conceptual basis which leads to
these squeezed states of radiation field has also triggered the ideas of visualizing squeezing in
non-canonical quantum systems and consequently the notion of squeezing has been extended
to multilevel atomic states and ensembles [5–8] and to spin systems with arbitrary but sharp
spin values [9, 10].

Quite recently, we have [1, 2] analysed in detail the notion of spin squeezing and looked
into several aspects of squeezing in the case of oriented and non-oriented systems, and in the
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case of a coupled spin s system composed of 2s spinor states. Generalizing the squeezing
criterion given by Kitagawa and Ueda [9], we have made a detailed study of pure as well
as mixed states. Kitagawa and Ueda have suggested in their paper that the occurrence of
squeezing is a consequence of quantum spin–spin correlations that exist among the 2s spinor
states which together constitute the spin s state. Our study reveals that all oriented states are
not squeezed but non-oriented states exhibit squeezing. In the case of a pure spin-1 state, our
claim is that the notion of non-oriented is synonymous with the notion of squeezing.

In the light of the above studies on spin systems, it becomes relevant to extend the ideas
of squeezing to bipartite systems which do not possess a sharp value of spin. Such systems
can arise due to the coupling of two systems with sharp angular momenta. An additional
aspect that arises in such a coupled state is whether a given state is entangled or not [11]. An
entangled state cannot be written as a product of the spin states of the individual systems but
only as a linear combination of such products. Further, it follows that the self and mutual
spin–spin correlations will be present in an entangled state. It is therefore necessary to look for
possible relationships among the three aspects, namely squeezing, entanglement and spin–spin
correlations.

The present paper which addresses these intrinsic notions is organized as follows. In
section 2, we look at the properties of coupled states and discuss the conditions to be satisfied
by a coupled state to be a direct product state and an entangled state. In the next section, we take
up the discussion on the squeezing aspect for a coupled state which may be either entangled
or not. In the case of an uncoupled state, the mutual spin–spin correlation will be absent and
consequently this has to be taken into account while defining the squeezing criterion. Taking
this into consideration, we propose a generalization of the squeezing criterion for a coupled
state of two spin systems. A detailed presentation of this is given in section 3. The dependence
of squeezing on entanglement and on correlations is also explored here. Section 4 deals with
the time evolution of a coupled pure spin state in the presence of a spin–spin interaction.
Our aim here is to show that a coupled pure spin state undergoing such interaction develops
squeezing as time elapses, even though, it may not have squeezing initially. We also look at
the manner in which squeezing depends on spin–spin correlations. The last section is devoted
to comments.

2. Properties of coupled states

The s = 1
2 states enjoy an exalted status in quantum theory since an arbitrary spin 1

2 state
can always be looked upon either as a

∣∣ 1
2

1
2

〉
state or as a

∣∣ 1
2 − 1

2

〉
state with respect to an

appropriately chosen Cartesian frame. Thus, a spinor is always oriented with respect to some
z-axis. Following the Schwinger construction [12], any higher spin s > 1

2 can be realized in
terms of 2s spin 1

2 states, but it cannot always be looked upon as a spin |ss〉 or |s − s〉 state
with respect to any choice of the Cartesian frame.

For s > 1
2 an oriented state is identified as an |sm〉 state in an appropriately chosen

Cartesian frame, with m taking any one of values −s, . . . , s. Such a state is cylindrically
symmetric with respect to the ẑ-axis which is also referred to as the axis of quantization. All
other states are referred to as non-oriented states. In other words, a non-oriented state cannot
be looked upon as an |sm〉 state with respect to any frame. A discussion of this idea for a
system with sharp angular momentum has been done earlier [1, 13]. We now would like to
characterize a coupled spin system based on these aspects. If H1 and H2 are the spin spaces
of two systems with spins s1 and s2 respectively, then a coupled state of these two systems is
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a state belonging to H1 ⊗ H2 and can be expressed as

|ψ12〉 =
∑
ij

aij |φi〉 ⊗ |ζj 〉
∑
ij

|aij |2 = 1 (1)

where |φi〉 (i = −s1, . . . , s1) and |ζj 〉 (j = −s2, . . . , s2) are the angular momentum basis
states of the subsystems s1 and s2, respectively. In the study of coupling of two angular
momenta, the basis states are usually chosen with respect to some common axis of quantization.
For a coupled state, one possible characterization could be to relax this usual choice and ask
whether a state |ψ12〉 is an eigenstate for the four mutually commuting operators J 2

1 , �J 1 ·Q̂1, J
2
2

and �J 2 · Q̂2, where Q̂1, Q̂2 refer to two arbitrary axes, one for each system. While every state
|ψ12〉 is an eigenstate of J 2

1 and J 2
2 , the eigenstates for the other two operators form a subset

of the space H1 ⊗ H2.
It is well known that in the case of two spinors the individual eigenstates for J 2

i and �J i ·Q̂i

expressed in terms of basis vectors referred to the common axis of quantization ẑ0 of a frame
x0y0z0 can be written in the form

|ψi〉 =
(

cos θi

2

sin θi

2 eiφi

)
z0

0 � θi � π 0 � φi � 2π i = 1, 2 (2)

where θi, φi are the polar angles of Q̂i with respect to the common frame. The direct product
state

∣∣ψ(a)
12

〉 =
(

cos θ1
2

sin θ1
2 eiφ1

)
z0

⊗
(

cos θ2
2

sin θ2
2 eiφ2

)
z0

=




cos θ1
2 cos θ2

2

cos θ1
2 sin θ2

2 eiφ2

sin θ1
2 cos θ2

2 eiφ1

sin θ1
2 sin θ2

2 ei(φ1+φ2)




z0

(3)

is an eigenstate of J 2
1 , �J 1 · Q̂1, J

2
2 and �J 2 · Q̂2 satisfying (with h̄ = 1)

J 2
1

∣∣ψ(a)

12

〉 = 1
2

(
1
2 + 1

) ∣∣ψ(a)

12

〉
(4)

�J 1 · Q̂1

∣∣ψ(a)

12

〉 = 1
2

∣∣ψ(a)

12

〉
(5)

J 2
2

∣∣ψ(a)
12

〉 = 1
2

(
1
2 + 1

) ∣∣ψ(a)
12

〉
(6)

�J 2 · Q̂2

∣∣ψ(a)

12

〉 = 1
2

∣∣ψ(a)

12

〉
. (7)

The other three common eigenstates are

∣∣ψ(b)
12

〉 =




cos θ1
2 sin θ2

2

−cos θ1
2 cos θ2

2 eiφ2

sin θ1
2 sin θ2

2 eiφ1

−sin θ1
2 cos θ2

2 ei(φ1+φ2)




z0

(8)

∣∣ψ(c)

12

〉 =




sin θ1
2 cos θ2

2

sin θ1
2 sin θ2

2 eiφ2

−cos θ1
2 cos θ2

2 eiφ1

−cos θ1
2 sin θ2

2 ei(φ1+φ2)




z0

(9)
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∣∣ψ(d)

12

〉 =




sin θ1
2 sin θ2

2

−sin θ1
2 cos θ2

2 eiφ2

−cos θ1
2 sin θ2

2 eiφ1

cos θ1
2 cos θ2

2 ei(φ1+φ2)




z0

. (10)

From this, it is clear that every direct product state is a common eigenstate of J 2
1 , �J 1 · Q̂1, J

2
2

and �J 2 · Q̂2 for some Q̂1 and Q̂2 and that given one such state, three orthogonal eigenstates
can be constructed, which of course span the direct product space H1 ⊗ H2. Conversely, it
follows that the common eigenstates of the above four operators have to be direct product
states only.

In the case of a sharp spin s state, we have characterized a pure state as oriented if it
happens to be an angular momentum state |sm〉 with respect to some quantization axis. This
property can be extended to a bipartite system of two spins s1 and s2. A pure state |ψ12〉 of a
bipartite system can be regarded as oriented if

�J 1 · Q̂1 �J 2 · Q̂2|ψ12〉 = m1m2|ψ12〉 (11)

for some Q̂1 and Q̂2. If s1 and s2 are arbitrary, then every direct product state |ξ1〉⊗ |ξ2〉 is not
necessarily oriented. However if s1 = s2 = 1

2 , every direct product state is always oriented.
This follows from the homomorphism between SU(2) and O(3).

A direct product state of two spinors is thus non-entangled, oriented and a common
eigenstate of four operators J 2

1 , �J 1 · Q̂1, J
2
2 , �J 2 · Q̂2. This implies that the rest of the states in

the Hilbert space H1 ⊗ H2 do not share the above properties. They are not only non-oriented
but also possess entanglement. Let us now look at the nature of spin–spin correlations present
in these coupled states.

The spin–spin correlations according to Kitagawa and Ueda are responsible for the
existence of squeezing. In their paper [9], they suggest that every state of a spin s system can
be visualized as a coupled state of 2s spinor states and claim that the squeezing behaviour of
the spin s state is due to the correlations that exist among the 2s spinor states. In our earlier
paper [1, 2], we have indeed given an explicit method of construction of a general pure spin s
state in terms of 2s spinor states. Based on this construction, we have analysed the nature of
a squeezed spin s state and in the case of s = 1, we have shown that the squeezing aspect is
intimately connected with the pairwise correlations defined through

Cij
µν(s) = 〈

Si
µSj

ν

〉 − 〈
Si

µ

〉 〈
Sj

ν

〉
i, j = 1, 2, . . . , 2s (12)

where Si
µ is the µth component of the ith spin �Si . We wish to call these self-correlations.

While these are absent in the case of a single spinor, there would be a large number of such
correlations for large s. These coupled states of arbitrary spin s1 and s2 not only possess the
above ‘self-correlations’ C

ij
µν(s1) and C

ij
µν(s2) but also the ‘mutual correlations’ between s1

and s2. These mutual correlations can be defined in an analogous way as

D12
µν = 〈S1µS2ν〉 − 〈S1µ〉〈S2ν〉 (13)

where S1µ(S2ν) is the µth (νth) component of the spin vector �S1( �S2). For a direct product
state of two spinors, it is easy to see that both C

ij
µν and D12

µν are zero. A direct product state
with s1 or s2 exceeding 1

2 may possess self-correlations but there are no mutual correlations.
An entangled pure state, on the other hand, certainly always possesses mutual correlations,
although there may or may not be self-correlations. Our work in this paper is limited to the
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discussion of a coupled state of two spinors and we will be using the ideas presented here to
arrive at the right criterion for the squeezing of such a bipartite state.

It may be mentioned here that the most general state of two spins s1 and s2 is a mixed state
which is not only entangled but also rich in both self and mutual correlations. In addition, it
may possess statistical correlations owing to the distribution of the spins in it.

3. Squeezing criterion for a general bipartite state

The problem of identifying squeezing in quantum systems other than the radiation field has
been taken up in the past and it is interesting to note that the characterization of squeezing
in such systems has been done using different approaches. For example, considering two
two-level atomic states, Barnett and Dupertuis [5] have constructed squeezed atomic states in
analogy with the multimode squeezed states and thermofield states of the radiation field. They
have identified correlated states, which are actually entangled, and define the collective atomic
dipole operators for them and these operators obey the usual angular momentum algebra. The
basis for identifying squeezing of atomic states is then the inequality relationships resulting
from the Heisenberg uncertainty relationship satisfied by the dipole operators. Wineland
et al [7] in their detailed study examine again correlated or entangled states of atomic systems
and characterize squeezing through the reduction of projection noise in the context of Ramsey
spectroscopy. As far as spin systems are concerned, Kitagawa and Ueda [9] have also attempted
to associate squeezing with quantum correlations after critically examining other criteria that
have been given in the literature.

According to Kitagawa and Ueda, a spin state |φ〉 is said to be squeezed if in that state

�( �S · n̂⊥)2 <
|〈 �S · n̂〉|

2
(14)

where n̂ is a unit vector along 〈 �S〉, called the mean spin direction and n̂⊥ is orthogonal to n̂.
This condition clearly distinguishes a squeezed state from other states in an intrinsic way.

The task now is to extend this to the case of a bipartite system which in general does not
possess a sharp value of the total spin. For example, a coupled state of two spinors can be a
superposition of triplet (s = 1) as well as the singlet states (s = 0). A possible choice for
the criterion is to consider the spin components S1µ + S2µ of the total spin �S = �S1 + �S2 with
respect to a common frame x0y0z0 and define the criterion exactly as in equation (14) with the
understanding that n̂ denotes the direction of 〈 �S1 + �S2〉 and �S.n̂, �S.n̂⊥ denote the components
of �S = �S1 + �S2 along and perpendicular to n̂, respectively. We have looked into this choice
which leads to a conclusion that certain direct product states such as

|ψ〉 =



√
3

2
1
2


 ⊗




√
3

2
−1
2


 =




3
4

−
√

3
4√
3

4

− 1
4


 (15)

will possess squeezing if we consider such a choice. This is undesirable since the two
subsystems may be totally independent, non-squeezed and non-interacting and if we formally
define direct product states of the two, these would be squeezed if we employ the criterion
suggested above.

We would therefore like to search for an appropriate criterion for squeezing of bipartite
states taking the above aspect into consideration. As an aid in this direction, it may be
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noted here that in problems aimed at determining correlations in a bipartite system, when the
subsystems are physically separated, two observers make measurements in frames of their
own choice. This freedom of choice of frame, in the context of entanglement, arises from
the property that entanglement of a bipartite system is invariant under local rotation of frames
(local unitary transformations on individual states ) describing the subsystems. It is therefore
necessary to allow for this freedom of choice of local frames for discussing squeezing and this
is done as follows.

Suppose a bipartite state |ψ12〉 (equation (1)) of two spins is specified with respect to
some frame x0y0z0 (say). Suppose [n̂1, n̂1⊥, n̂1⊥′ = n̂1 × n̂1⊥] and [n̂2, n̂2⊥, n̂2⊥′ = n̂2 × n̂2⊥]
denote two sets of mutually orthogonal directions. Now it is easy to see that the components
of spin operators �S1 and �S2 with respect to these triplets satisfy the usual angular momentum
commutation relations,

[ �S1 · n̂1⊥ + �S2 · n̂2⊥, �S1 · n̂1⊥′ + �S2 · n̂2⊥′ ] = i( �S1 · n̂1 + �S2 · n̂2) (16)

and the uncertainty relationship for these operators takes the form

�( �S1 · n̂1⊥ + �S2 · n̂2⊥)2�( �S1 · n̂1⊥′ + �S2 · n̂2⊥′)2 � (〈 �S1 · n̂1〉 + 〈 �S2 · n̂2〉)2

4
(17)

where,

�( �S1 · â + �S2 · b̂)2 = 〈ψ12|( �S1 · â + �S2 · b̂)2|ψ12〉 − 〈ψ12|( �S1 · â + �S2 · b̂)|ψ12〉2. (18)

Suppose now n̂1 and n̂2 denote the mean spin directions of the individual spinor states,
defined through

n̂i = 〈ψ12| �Si |ψ12〉
|〈ψ12| �Si |ψ12〉|

i = 1, 2 (19)

and n̂i⊥ are directions such that

n̂i⊥ · n̂i = 0 i = 1, 2. (20)

These directions (n̂i, n̂i⊥, n̂i⊥′ ) define the individual Lakin frames [1] as we have

〈 �Si · n̂i⊥〉 = 0 〈 �Si · n̂i⊥′ 〉 = 0 i = 1, 2. (21)

The criterion we adopt is as follows. Given a bipartite state, there are two mean spin directions
n̂1 and n̂2 defined through equation (19). A bipartite state with mean spin directions n̂1, n̂2 is
said to be squeezed in a perpendicular component �S1 · n̂1⊥ + �S2 · n̂2⊥, if the variance of this
operator in the given state is less than half the sum of the absolute values of the expectation
values of the spin vectors in that state.

Expressed mathematically, the criterion becomes

�
( �S1 · n̂1⊥ + �S2 · n̂2⊥

)2
<

|〈 �S1〉| + |〈 �S2〉|
2

. (22)

This can be further written in the form

�
( �S1 · n̂1⊥

)2
+ �

( �S2 · n̂2⊥
)2

+ 2
〈 �S1 · n̂1⊥ ⊗ �S2 · n̂2⊥

〉
<

|〈 �S1 · n̂1〉| + |〈 �S2 · n̂2〉|
2

. (23)

Before we provide some justification for this criterion, it must be noted that it is in an invariant
form so that given any frame, the criterion can be expressed in terms of the spin components
referred to that frame, once the directions n̂i, n̂i⊥ are determined in that frame. Instead, one
can also transform the frame by appropriate rotations and obtain the individual Lakin frames.
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Suppose the so obtained frames x1y1z1 and x2y2z2 are named such that ẑi = n̂i , x̂i = n̂i⊥ and
ŷi = n̂i⊥′ , the criterion takes the forms

�
(
S1x1

)2
+ �

(
S2x2

)2
+ 2

〈
S1x1 ⊗ S2x2

〉
<

∣∣〈 �S1z1

〉∣∣ +
∣∣〈 �S2z2

〉∣∣
2

(24)

�
(
S1y1

)2
+ �

(
S2y2

)2
+ 2

〈
S1y1 ⊗ S2y2

〉
<

∣∣〈 �S1z1

〉∣∣ +
∣∣〈 �S2z2

〉∣∣
2

. (25)

The given state would therefore be squeezed in the components S1x1 + S2x2 or S1y1 + S2y2

if equation (24) or (25) is satisfied. For a bipartite system of two spinors, the criterion reduces
to a simpler form since,

�S2
1x1

= �S2
2x2

= �S2
1y1

= �S2
2y2

= 1
4 (26)

always and therefore the squeezing criterion along the individual x- and y-axes reduces to

〈
S1x1 ⊗ S2x2

〉
<

∣∣〈 �S1z1

〉∣∣ +
∣∣〈 �S2z2

〉∣∣ − 1

4
(27)

〈
S1y1 ⊗ S2y2

〉
<

∣∣〈 �S1z1

〉∣∣ +
∣∣〈 �S2z2

〉∣∣ − 1

4
. (28)

We wish to now apply this criterion to bipartite states of interest and see whether they are
squeezed or not. To begin with let us consider a bipartite state which is a direct product state
of two states with the first being

∣∣ 1
2

1
2

〉
with respect to ẑ1 while the second is

∣∣ 1
2

1
2

〉
with respect

to ẑ2. When expressed in terms of the special common frame x0y0z0 [1] and in individual
Lakin frames, it has the structure

|ψ12〉 = |ξ1〉 ⊗ |ξ2〉 =




cos2 θ
2

−sin θ
2 cos θ

2

cos θ
2 sin θ

2

−sin2 θ
2




z0

=
(

1

0

)
z1

⊗
(

1

0

)
z2

. (29)

Since

�
( �S1 · n̂1⊥

)2 = �
( �S2 · n̂2⊥

)2 = 1
4 (30)

〈 �S1 · n̂1⊥ ⊗ �S2 · n̂2⊥
〉 = 〈 �S1 · n̂1⊥

〉 ⊗ 〈 �S2 · n̂2⊥
〉 = 0 (31)

|〈 �S1 · ẑ1〉| = |〈 �S2 · ẑ2〉| = 1
2 (32)

the criterion in the form (23) or in the forms (24), (25) is not satisfied at all and hence a direct
product state of two spinors is never squeezed. This is in perfect agreement with Kitagawa
and Ueda [9] in that the squeezing arises due to correlations and a direct product state which
has neither self nor mutual correlations is therefore not squeezed.

3.1. Squeezing of entangled pure state

It is clear from the previous discussion that entanglement is necessary in the case of a two-
spinor bipartite state for squeezing to occur. However, it is to be seen whether entanglement
is sufficient also. We therefore begin this study by considering a general pure state which
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is entangled. Such a state can be expressed with respect to a basis |m1m2〉z0 referred to a
common frame x0y0z0 in the form

|ψ12〉 =




a11

a12

a21

a22




∑
ij

|aij |2 = 1 (33)

where of course a11a22 �= a12a21. This latter condition ensures [11] that |ψ12〉 is entangled.
Since, in the general case, the frame x0y0z0 may not be a Lakin frame for either spinor, we
consider the rotation

R12 = R1(φ1, θ1, 0) ⊗ R2(φ2, θ2, 0) (34)

on this state so that

|ψ12〉 −→ |ψ ′
12〉 = R12|ψ12〉 =




c11

c12

c21

c22


 (35)

where c11 can be taken to be a non-negative real number (by using the freedom of choice of
the overall phase). The individual rotations on the coordinate system x0y0z0 take it to the
respective Lakin frames x1y1z1 and x2y2z2 if the Euler angles of rotation are chosen to satisfy

tan φi = 〈Siy〉
〈Six〉 i = 1, 2 (36)

tan θi = (〈Siy〉2 + 〈Six〉2)
1
2

〈Siz〉 i = 1, 2. (37)

With these transformations, we now obtain〈
S1x1

〉 = 〈
R12S1xR

†
12

〉 = 1
2 (c11c21 + c	

12c22 + c	
22c12 + c	

21c11) = 0 (38)

〈
S2x2

〉 = 〈
R21S2xR

†
21

〉 = 1
2 (c11c12 + c	

12c11 + c	
21c22 + c	

22c21) = 0 (39)

〈
S1y1

〉 = 〈
R12S1yR

†
12

〉 = i

2
(−c11c21 − c	

12c22 + c	
21c11 + c	

22c12) = 0 (40)

〈
S2y2

〉 = 〈
R21S2yR

†
21

〉 = i

2
(−c11c12 + c	

12c11 − c	
21c22 + c	

22c21) = 0 (41)

〈
S1z1

〉 = 〈
R12S1zR

†
12

〉 = 1
2

(
c2

11 + |c12|2 − |c21|2 − |c22|2
)

(42)

〈
S2z2

〉 = 〈
R21S2zR

†
21

〉 = 1
2

(
c2

11 − |c12|2 + |c21|2 − |c22|2
)
. (43)

A glance at the squeezing criterion implies that for the state to exhibit squeezing, first of all,〈
S1z1

〉
,
〈
S2z2

〉 �= 0. Further, the first four equations referring to the Lakin frame yield

c11c21 = −c	
12c22 (44)

c11c12 = −c	
21c22 (45)

which lead to

c11c22
(|c21|2 − |c12|2

) = 0 (46)
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and

c	
12c21

(
c2

11 − |c22|2
) = 0. (47)

There arise several cases satisfying these conditions

case 1: cij = δii0δjj0 for fixed i0, j0 (48)

case 2: |c21| = |c12| �= 0 |c11| = |c22| φ12 = π + φ22 − φ21 (49)

case 3: c11 = c22 = 0 c12, c21 �= 0 (50)

case 4: |c12| = |c21| = 0. (51)

The first case refers to direct product states. The second case implies
〈
S1z1

〉 = 〈
S2z2

〉 = 0 and
hence although it is entangled, it is not squeezed. This state is actually a singlet state with
total spin s = 0 and

∣∣〈S1z1

〉∣∣ +
∣∣〈S2z2

〉∣∣ = 0.
It is this latter value which makes a singlet state not squeezed although there is

entanglement. We therefore conclude that entanglement is necessary but not sufficient for
squeezing to be present. Consider now the state in case (3), which has the form

|ξ〉 =




0

c12

c21

0


 . (52)

Under the rotation R1
(
0, π

2 , 0
) ⊗ I , which is a local rotation, this state changes to

|ξ ′〉 = (R1 ⊗ I)|ξ〉 =




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0







0

c12

c21

0


 =




c21

0

0

−c12


 (53)

which shows that it belongs to case (4). It is therefore enough to consider only the states
belonging to case (4). Here too, if we use the degree of freedom for the overall phase, the
normalization condition and the freedom of rotation about the respective zi axes, the state can
be reduced to the simple form with its elements parametrized as

|χ〉 =




cos θ
2

0

0

sin θ
2


 0 < θ < π. (54)

This is the simplest matrix form of an entangled state with non-zero mean values for its
individual spin vectors. The relevant quantities needed to determine the squeezing behaviour
are

�S2
1x1

= �S2
2x2

= �S2
1y1

= �S2
2y2

= 1
4〈

S1x1 ⊗ S2x2

〉 = 1
4 sin θ = −〈

S1y1 ⊗ S2y2

〉
∣∣〈S1z1

〉∣∣ = ∣∣〈S2z2

〉∣∣ = 1
2 | cos θ |.

Substituting these in the squeezing condition given by equation (23) or (24), we obtain

1 + sin θ < | cos θ | for S1x1 + S2x2 (55)
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Figure 1. Variation of squeezing Qx (♦) and Qy (×) with respect to θ .

and

1 − sin θ < | cos θ | for S1y1 + S2y2 . (56)

These conditions are certainly satisfied for a wide range of θ which indicates that a wide
variety of states of the form of equation (54) with different values of θ exhibit squeezing.
The variation of squeezing with respect to θ is shown in figure 1 where we have plotted the
difference between the right- and left-hand sides of equations (55) and (56)

Qx = | cos θ | − sin θ − 1 (57)

Qy = | cos θ | + sin θ − 1 (58)

as a function of θ . Positive (negative) values of Qx,Qy show the presence (absence) of
squeezing. It may be noted from figure 1 that θ = 90◦ corresponds to the singlet state referred
to in case (2).

At this stage, it is relevant to see how the correlations account for squeezing. As mentioned
earlier, a bipartite system of two spinors has no self-correlations. The mutual correlations
which exist between the two spins are

D12
µ1ν2

= 〈
S1µ1S2ν2

〉 − 〈
S1µ1

〉 〈
S2ν2

〉
µ, ν = x, y, z. (59)

If these are zero, then the state has no mutual spin–spin correlation. All direct product states
fall into this category. For the squeezed states defined by equation (54), these correlations
with respect to the Lakin frames turn out to be

D12
x1x2

= −D12
y1y2

= 1
4 sin θ (60)

D12
z1z2

= 1
4 sin2 θ (61)

D12
x1y2

= D12
x1z2

= D12
y1z2

= 0. (62)

The graphs of figure 2, in which we have plotted both the squeezing and mutual correlation
functions, reveal that squeezing is absent whenever there are no mutual correlations and when
the mutual correlations assume their extreme values. Indeed these extreme values correspond
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Figure 2. Variation of spin–spin correlations D12
xx (�), D12

yy (�) and D12
zz (•), The plot also shows

squeezing in Qx (♦) and Qy (×) with respect to θ .

to a singlet state which confirms that it is a maximally entangled state. However, it has both
〈 �S1〉 = 〈 �S2〉 = 0 due to which it does not exhibit squeezing.

4. Generation of squeezing

We have so far discussed the nature of spin squeezing for a general coupled pure state in terms
of a new criterion which is in some sense a generalization of the earlier criterion. It is of
interest to know whether squeezing can be generated by subjecting a spin system to external
interactions. Indeed, such attempts have been done in the literature for atomic systems [5]
and for spin systems [7, 9]. For sharp spin states, Kitagawa and Ueda consider a Hamiltonian
quadratic in the spin operators and show that the state generated during evolution under such
a Hamiltonian possesses squeezing. It is clear that a Hamiltonian linear in the spin variables
can only lead to a rotation of the state or of the coordinate system. Such an action does not
introduce any squeezing. It is therefore necessary that the Hamiltonian should be at least
quadratic in the spin variables in the case of single spin. For a bipartite system on the other
hand, it should be at least a linear combination of the product of the individual spin operators.
We therefore consider below a spin–spin interaction Hamiltonian,

H = iη[S1+S2+ − S1−S2−] (63)

where

Si± = Six ± iSiy i = 1, 2 (64)

and η is any real number. This Hamiltonian incidentally is a special case of the Hamiltonian in
[5] if one makes the identification suggested by Feynman et al [14] that any two-level quantum
system is equivalent to a spin 1

2 system. If the initial coupled state |ψ〉 of these two spinors
is chosen to be a direct product state |ψ〉 as in equation (29), where the basis vectors and the
Hamiltonian are referred to the frame x0y0z0 [1], the evolution in time given by

|ψ(t)〉 = exp(−iHt)|ψ〉 = exp[ηt (S1+S2+ − S1−S2−)]|ψ〉 (65)
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leads to the explicit form

|ψ(t)〉 =




cos τ cos2 θ
2 − sin τ sin2 θ

2

−cos θ
2 sin θ

2

cos θ
2 sin θ

2

−sin τ cos2 θ
2 − cos τ sin2 θ

2


 τ = ηt. (66)

This state is in general entangled. As in any general case, we find here also that the frame
x0y0z0 is not the common Lakin frame for the two spinors, since〈

S1x0

〉 = sin θ

2
[cos τ + sin τ cos θ ] = −〈

S2x0

〉
(67)

〈
S1y0

〉 = 〈
S2y0

〉 = 0 (68)

〈
S1z0

〉 = 〈
S2z0

〉 = 1

2

[
cos 2τ cos θ − 1

2
sin 2τ sin2 θ

]
. (69)

It is easier to analyse the squeezing behaviour if we go over to the individual Lakin frames
x1y1z1 and x2y2z2 via the rotations through

αi = tan−1

(〈
Six0

〉
〈
Siz0

〉
)

i = 1, 2 (70)

of x0y0z0 about the y0-axis.
In these Lakin frames, the expectation values of the various spin operators are given by〈

Sixi

〉 = 〈
Six0

〉
cos αi − 〈

Siz0

〉
sin αi = 0 (71)〈

Siyi

〉 = 〈
Siy0

〉 = 0 (72)〈
Sizi

〉 = 〈
Six0

〉
sin αi +

〈
Siz0

〉
cos αi (73)

�S2
1x1

+ �S2
2x2

+ 2
〈
S1x1 ⊗ S2x2

〉 = 1
2 (1 − A cos2 α1 − B sin 2α1 sin θ − cos2 θ sin2 α1) (74)

�S2
1y1

+ �S2
2y2

+ 2
〈
S1y1 ⊗ S2y2

〉 = 1
2 + 1

2 [sin 2τ cos θ − sin2 θ sin2 τ ] (75)∣∣〈S1z1

〉∣∣ +
∣∣〈S2z2

〉∣∣ = (
sin2 θ(cos τ + sin τ cos θ)2 +

(
cos θ cos 2τ − 1

2 sin 2τ sin2 θ
)2) 1

2 (76)

where A = (cos θ sin 2τ + sin2 θ cos2 τ ) and B = sin τ − cos θ cos τ . The quantities Qx,Qy

defined earlier now become functions of time and are given by

Qx(t) = (
sin2 θ(cos τ + sin τ cos θ)2 +

(
cos θ cos 2τ − 1

2 sin 2τ sin2 θ
)2) 1

2

− (1 − A cos2 α1 − B sin 2α1 sin θ − cos2 θ sin2 α1) (77)

Qy(t) = (
sin2 θ(cos τ + sin τ cos θ)2 +

(
cos θ cos 2τ − 1

2 sin 2τ sin2 θ
)2) 1

2

− (1 + sin 2τ cos θ − sin2 θ sin2 τ ). (78)

We infer that the state is squeezed if either Qx(t) or Qy(t) is positive. The graphs of Qx(t) and
Qy(t) plotted below in figure 3 show that the squeezing is observed for a wide range of values
of θ and τ , except at certain points. These points are at τ = 90◦, θ = nπ

2 , n = 0, 1, 2, . . . and
for τ = 45◦, θ = 0, etc, and correspond to either direct product or singlet states.
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Figure 3. Variation of squeezing Qx (♦) and Qy (�) with respect to θ with τ = 90◦ in the upper
plot and τ = 45◦ in the lower plot.

We now look at the mutual correlations that exist between the two spinors at various
instants of time evolution. These are explicitly given by

D12
x1x2

= − 1
4 (A cos2 α1 + B sin 2α1 sin θ + cos2 θ sin2 α1) (79)

D12
y1y2

= 1
4 (sin 2τ cos θ − sin2 θ sin2 τ ) (80)

D12
z1z2

= 1
4

[
A sin2 α1 − B sin θ sin 2α1 + cos2 θ cos2 α1 − (

sin2 θ(cos τ + sin τ cos θ)2

+ 4
(

cos θ cos 2τ − 1
2 sin 2τ sin2 θ

)2)]
(81)

D12
x1z2

= − sin 2α1

8
(B2 − sin2 θ) − B sin θ cos 2α1

4
(82)

D12
x1y2

= D12
y1z2

= 0. (83)
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Figure 4. Variation of spin–spin correlations D12
x1x2

(×), D12
y1y2

(•) and D12
z1z2

(�). The plot also
shows squeezing in Qx (♦) and Qy (�) with respect to θ with τ = 90◦.

Plotting these correlations together with squeezing functions, we observe from figure 4 below
that whenever there is squeezing the state necessarily possesses spin–spin correlations. The
graphs lead to similar conclusions to those arrived at earlier in the discussion of the general
case.

5. Summary

We have looked into the squeezing aspect of a pure bipartite state consisting of two spinors. A
suitable criterion for the squeezing of such states has been obtained which is a generalization
of the squeezing criterion for states of sharp spin. While squeezing is established in the case of
sharp spins due to self-correlations, that for a bipartite state occurs due to the presence of both
self and mutual correlations. The existence of mutual correlations also implies entanglement.
This raises the question whether every entangled state is squeezed. We have shown that all
entangled states of two spinors are squeezed except the singlet state which is an exception. This
state lacks squeezing since it has both 〈 �S1〉 = 0, 〈 �S2〉 = 0. A direct product of two spinors, on
the other hand, has neither self nor mutual correlations and hence is never squeezed. However,
if s1 or s2 > 1

2 , then a direct product state can indeed possess self-correlations and such a
bipartite state may show squeezing. An example of this could be the direct product of a spin
1 squeezed state with a spin 1

2 state. These situations indicate that while entanglement stems
from only mutual correlations, squeezing arises due to both of them and when there is net
mean spin value for either of the subsystems.

Our study in this paper gives some justification to some of the claims made by Kitagawa
and Ueda [9] regarding what exactly causes squeezing and how squeezed states can be
generated. We have shown that spin–spin interactions can lead to entangled as well as
squeezed states. Further studies on these aspects are under progress where we are also
planning to analyse the squeezing of mixed states of bipartite systems in which there are not
only quantum correlations among and within the spins but also correlations arising due to the
nature of statistical distribution in the individual spin assemblies.

It may also be noted here that Trifonov in his paper [15] uses the Schrödinger–Robertson
uncertainty relationship instead of the Heisenberg uncertainty relationship as the basis to define
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what are called generalized intelligent states [GIS], which according to him exhibit squeezing.
In this context, it is interesting to see how squeezing for bipartite systems can be pictured
based on the above more general inequality relationship. We hope to address this and related
issues in our future work.
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